边缘AI是否比其常规对应物更好是有争议的,因为它们都以我们与AI相关的无缝效率和速度执行略有不同的任务。因此,比较它们可能不是一项简单的任务。最重要的是,边缘人工智能是其前辈的进化版本。在这里,我们将看到边缘AI的一些主要品质。
1、减少费用和带宽要求
基于云的人工智能系统使用大量数据进行操作,需要大带宽才能正常运行。因此,对于严重依赖人工智能进行日常运作的组织而言,与数据和带宽使用相关的成本通常很高。EdgeAI将数据处理保持在设备本地。因此,边缘人工智能设备的带宽使用不会像使用传统云人工智能的设备那么高。因此,可以控制带宽成本。更重要的是,边缘AI用户也能更快地获得结果,因为他们的网络和设备的网络流量很低。
2、终端设备的更大自主权和性能
边缘AI的主要特征之一是它为所有端点设备提供了更高的独立性。如前所述,此类设备无需连接到中央服务器即可运行。因此,此类设备的速度和效率始终很高。这种质量的一个例子是在繁忙道路上的汽车中的自动驾驶系统。这种系统中的人工智能是高度自动化的,可以在驾驶无人驾驶车辆通过任何类型的道路时即时进行修正和调整,而不受外部因素的影响。边缘AI设备中的机器学习通常是实时实现的。
此外,与由标准AI驱动的设备相比,支持边缘AI的设备显示出更高的响应能力和性能水平。正如我们现在所知,边缘AI计算机在本地处理数据,从而消除了从基于云的基础设施来回发送数据的延迟。因此,端点性能更强,延迟最小。
3、更多数据隐私
不用说,数据隐私和安全是现代计算中的重要参数。通过云计算网络中的各种通信渠道传输的数据丢失的可能性始终存在。在这种情况下,数据泄露的主要诱因是两个或多个数据点之间的绝对距离。因此,使用基于云计算和人工智能解决方案的组织需要竭尽全力确保其数据得到有效保护。
一般来说,边缘计算AI减少了由于数据的本地处理而导致数据泄露或泄漏的机会。除此之外,用户还可以设置限制谁可以访问存储在其个人设备中的数据。因此,边缘AI是用户数据处理的更安全选择。